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Let’s start with atoms! @ Empa

L%) Atoms

People
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Atoms like to bond!
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Atoms like to dance!

M. Dimitrievska,
Workshop “Dancing with molecules”



What can we learn from dancing? @ Empa

Materials Science and Technology

Japan Portugal

M. Dimitrievska,
Workshop “Dancing with molecules”



What can we learn from dancing? @ Empa

Materials Science and Technology

Breakdance Valcer

M. Dimitrievska,
Workshop “Dancing with molecules”
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What is Raman spectroscopy? @®Empa
, M. Dimitrievska,
3 MO Workshop “Dancing with molecules”
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Raman spectroscopy:
€ studying how molecules dance!
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Introduction
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Raman scattering process
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Raman
spectroscopy
system
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(1)

(2)

Laser




Raman
spectroscopy
system

Mirjana.Dimitrievska@empa.ch




Introduction: Raman spectrum

Rayleigh Scattering
Ex
¥
Raman Scattering — Stokes Raman Scattering — Anti-Stokes
M A\
/== N ' =N
ol n A_L A
Raman Shift (cm”)
Wavelength (nm) 544 538 552 220 219

Mirjana.Dimitrievska@empa.ch

13

@ Empa

Materials Science and Technology

!

A A A

hw hw's hw

M ||
.|| i

hw At

Y ¥ v

Rayleigh Stokes anti-Stokes
scattering scattering scattering




14
Introduction: Raman spectrum @ Empa

Materials Science and Technology

Raman spectrum provides indirect information about the energy of phonons created or
annihilated in the scattering medium. Each spectrum is a characteristic fingerprint of the
compound and contains information about:

Crystal structure Atomic Composition Crystal quality
% Cu,ZnSns, ' l ] ] ' '” l l [ High crystal quality
| I tetragonal structure i 1
X— o<l el 295 _
Z/ . 112 378
® > [—— Cu.ZnGeS,
£ e[ -
alld o = 5 ‘é
— g Et =
@ o =
= N L £
E CuyZnSnS, 2 %‘ Low crystal quality
Y o cubic structure S g
| & o = = £
X— gl P 196 —
T I
alld) o 172)| ]
(A —Cu_ZnSnSe,
200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500 200 250 300 350 400 450 500
. B aman shift (cm )
Raman shift (cm™) Raman shift (cm ™)
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Introduction: Raman spectroscopy @ Empa

Materials Science and Technology

An ideal characterization tool for obtaining deeper insights about fundamental
properties which is simple and non-destructive, offers high resolution, gives
structural and chemical information, and is applicable at both laboratory and

mass-production scales.

Non-destructive High resolution (laser spot size) Fait
¢A ua .
i i 4B

Structural and chemical information Lab and industrial scales

X R G B

Mirjana.Dimitrievska@empa.ch
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How to do measurements? @ Empa
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Considerations to take into account when performing the measurements:

O Excitation energy (laser wavelength)
O Power density and signal/noise ratio

0 System alignment and calibration

Mirjana.Dimitrievska@empa.ch
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Excitation energy (laser wavelength) @ Empa
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Music

Laser wavelength =
Different types of music

Mirjana.Dimitrievska@empa.ch



Excitation energy (laser wavelength) @ Empa

M. Dimitrievska, Phys. Chem. Chem. Phys.,

PCCP ' 2016,18, 7632-7640

Resonant Raman scattering of
ZnS, Se,_, solid solutions: the role of S and
Se electronic states

& o 2
"_. CHEMISTRY {m" ‘175§
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Excitation energy (laser wavelength) gEmpa
ey > Egt strong photon-matter interaction ) < E,: weak photon-matter interaction
(low penetratlon and small volume analysis) (Iarger volume analysis)

ZnS (E, = 3.5 eV)

A nS

Zns 1100 nm
N, (E) 26 nm
MoS, ' # Mos,
514nm (2.4eV) 325 nm (3.8eV)

ZnS

m V
S—
Intensity (arb.units)
N
o
>
3
Intensity (arb.units)

\
Mos, ‘

200 300 400 500 200 300 400 500
Raman shift (cm™) Raman shift (cm™)



»ﬂL Multi length excitation Raman spectroscopy @Empa 0
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Lexi = E4 O E;: resonance conditions MoS,

Raman intensity: (single crystal)

I ocz_” <O|He—f|n><n|He—Ph|n'><nl|He—r|O> 'U\_/L—M—’—N\M A
: ; 5 ext
Wavelength (nm) - 785 nm
1000 900 800 700 600 560 550 540 é
Jro64nm 785nm| 633nm| - s32nm|| =
130 eV < 633 nm
s M
& §> 2 532 nm
8 1.84 eV ] 514 nm
?_“’ Raman = JU\
c contribution o
.% 2.00 eV WMJUM 458 nm
- x10
= 325 nm
ey . 5 =T ! ey e 2040 100 200 300 400 500 600 700 800 900
12 1.3 14 15 16 1.7 1.8 1.9 20 21 22 225 230 . 4
c Raman shift (cm™)
nergy (eV)

Mirjana.Dimitrievska@empa.ch M.Placidi, M. Dimitrievska et al. 2D Mater. 2 035006 (2015)
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Assessment of ZnS in Cu,ZnSnS,

Standard Raman spectroscopy Resonance Raman spectroscopy
514 nm

325nm

Zns 2nd order

3rd order

%\ ) zns
10‘3', More . 535 il\r/lnoprjrities
Sk ] pristine CZ‘TS 20n order CZTS pristine
Zn-lst0|ch|orlnetr|c . s | . . /\I . . \ s |
100 200 300 400 500 250 300 350 400 500 1000 1500
Raman shift (cm™) Raman shift (cm™)
Multi length excitation Raman spectroscopy
514
325 458 488 |532 632 785 830 1064
] [ [ 4 = [ [ |
1 T N s — | ) ) ) 0
ZnS ZnSe gpg, ¥ Cu;Se CZTS SnS SnSe Sn,S;  CZTSe/CTS

Mirjana.Dimitrievska@empa.ch M. Dimitrievska et al. Sol. Energy Mater. Sol. Cells,149, 304—309 (2016)
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Excitation energy: application @ Empa

Materials Science and Technology

In-depth non-destructive characterization of layered devices

/L

Decreasing band gap ZnOAl | "
structure of the solar cell | <20 Ve
: . A =325 nm
device allows analyzing
different layers using a
consecutive lower energy A
excitation.
CdS layer
A =442 nm
A
e B surface CZTSe
sub- CZTSe ka A =532 r_1m
surface
CZTSe
sub-surface CZTSe
A =785nm
L 1 L 1 L 1 L 1 L 1 L //A
200 o 200 300 400 500 600 1000
» 38 3l Raman shift [cm™]

Mirjana. Dimitrievska@empa.ch M. Dimitrievska et al. Sol. Energy Mater. Sol. Cells, 157, 462—-467(2016)



Applied power density @ Empa
Raman spectroscopy is a non-destructive technique, but this is only within certain limits.

The irradiance of the sun is around 0.1W/cm?.

If we focus a laser beam of 1 m\W through a microscope on a spot of 1 um diameter, then
the obtained density of power is 5 orders of magnitude higher than that of the Sun.

‘ Diameter 1 um

=0.1W/cm?2 =63600W/cm?

Mirjana.Dimitrievska@empa.ch



Applied power density

Power study
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@ Empa
Materials Science and Technology
Peak position (due to
the expansion of the
lattice (reversible))

320 825 330 335 340 345

Raman Shift [em ] Broadening of peakS

(due to the reduction
of the phonon life
time (reversible))

Change of the shape, intensity, or
appearance of new peaks (due to
recrystallization, decomposition or
reaction between the phases
(irreversible))
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Applied power density @ Empa
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Power study recipe

« Start with lowest power

 Measure Raman spectrum (1)

* Increase power for certain increment (don’t change the measurement point)
* Measure Raman spectrum (2)

* Reduce power to minimum power

* Measure Raman spectrum (3)

 Compare (1) and (3) spectrum _ Decision point

* Increase power for certain increment (don’t change the measurement point)
* Measure Raman spectrum (4)

« Compare (1) and (4) spectrum _ Decision point

* Increase power for certain increment (don’t change the measurement point)
 Measure Raman spectrum (5)

 Compare (1) and (5) spectrum _ Decision point

Decision point: If you see differences between the spectra, go
back to lower power, and do all measurements with that
Mirjana.Dimitrievska@empa.ch power. If no differences, increase power.
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Signal/noise ratio @ Empa

Materials Science and Technology

Low power density could induce small signal/noise ratio (SNR) that could make the
interpretation of the Raman measurements more difficult.

There are different types of noise. Depending on their origin they can be reduced/solved
or not.

Spike: originated from cosmic rays. The
integration 100s - . .
number of scans: 1 probability of occurrence increases with
time acquisition

m :
= Spikes Random noise: intrinsic to
g measurement. It is reduced when the
cU . . . . .
E Random noise and | integration time is increased.
% electronic noise Electronic noise: intrinsic - depends on
= / the detector. It limits the SNR of the
| system.

Milana PIm Artifacts of system — Artifacts of the system: intrinsic —

100  zuvusVUauUTBLUTEUY0 700 depends of the optical system. It doesn’t

Raman shift (cm™) change with the integration time.



Signal/noise ratio

Different strategies could be utilized for the reduction of these effects:

@ Empa

Materials Science and Technology

Spikes: elimination of spikes can be obtained comparing different scans and making the
average spectra after cleaning up the spikes

Mirjana.Dimitrievska@empa.ch

i
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| |

Intensity (arb. units)

3th scan

i

|

2nd scan

1st scan

filtered spectrum
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200 300 400 500

Raman shift (cm™)
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Signal/noise ratio @ Empa
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Different strategies could be utilized for the reduction of these effects:

Random noise: can be reduced by increasing the time of integration, however this will also cause
the increase in the spike occurrence

2.0x107
|
g 1.5x102}
c ‘
=)
-c% I_ntegration [ |
> time T 1.0x10°F
B 300s n :
5 150s i a
= | 80s 5.0x10° - .
H 60s ' R -
w 30s I . .
Los CCD electronic noise
PR RV A S E SR RS S S B O.OH‘muuxH“x““x““m“m““
100 200 300 400 500 0 50 100 150 200 250 300 350
Raman shift (cm™) Integratio time (s)

However, electronic noise is intrinsic property of the detector. Using detectors with
lower working temperature could reduce this effect.

In order to improve the signal/noise ratio, it is necessary to optimize the acquisition
conditions, time integration and number of scans!



System alignment
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@ Empa
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A correct alignment of the optical system is very important in order to optimize the signal/ noise

ratio.

Laser tail / Measurement window

/

&
=<
®
«Q
>
n
)
Q
=
9]
=.
>
«Q
Intensity (arb\mlts

Air
modes

Measurement
window

spectrometer

—J

100

Mirjana.Dimitrievska@empa.ch

200

300 400 500

Raman shift (cm™)
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Example:
Moving the

measured spectral

window
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System alignment @ Empa

Materials Science and Technology

Finally, a correct calibration of the Raman frequencies is required in order to obtain the correct positions of
Raman peaks.

Correct calibration: it is necessary to define the laser position at 0 cm™. Also, it is necessary to use a
reference sample in order to correct the calibration between pixels and wavenumbers. (For example, the
silicon, peak position at 520 cm?)

Before correction After correction
Ocm /llf l’l‘
)
c
>
g laser
9
= g 2
c £ £
9 520.0 £ £
£ : b= =
J L silicon reference ) a
200 20 500 510 520 530 540 550 J
Raman shift (cm™) e

L ! L p— L L L L L ¥ B L
100 200 500 525 550 100 200 500 525 550

. . . ay . -1 - -1
MIrJana.Dlmltrlevska@empalch Raman shift [cm J Raman shift [cm ]




How to do measurements? @ Empa

Recipe:

> Pick the right energy excitation
« Consider material’s properties, such as band gap
« What do you need to detect?
« What do you want to investigate?

» Do a power study and optimize SNR

« Choose the right power, integration time, and number of scans to obtain the
lowest SNR, without damaging the material

» Choose the right spectral window for your study

» Measure reference samples for calibration of position as often as possible

Mirjana.Dimitrievska@empa.ch
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Practical application

Mirjana.Dimitrievska@empa.ch



Application: Identification of fundamental modes @ Empa -

Materials Science and Technology
Lattice dynamic and structural characterization (DFT and experiment)

Phonon Dispersion and Density of States
400

Neutron
' vibrational
spectra

300

Total
P

Zn

Wavenumber (cm™)
N
o
[}

]

Mirjana.Dimitrievska@empa.ch



Application: Identification of fundamental modes @ Empa -

Materials Science and Technology

Identification of Raman mode positions and symmetry type

Zn,P,: P4,inmc Irreducible representation for Raman active modes:

TrRaman = 9Alg + 10B1g + 4B2g + 16Eg

Labels:
(A, B), E, T : non-, double-,

triple- degenerate a 0 0
. . ERA =10 a O

A or B : symmetric or 18 0 0 b
asymmetric with respect to 0 0

the principal symmetry axis ¢

C ERB1g =0 —c O
n 0 0 O
1 or 2 : symmetric or 0 d O
asymmetric with respect to Re.. =(d 0 0
the rotation around a two- ® \o 0 o0

fold axis (C,) normal to the 0 0 e
principal symmetry axis C, gREg = (0 0 e)
e e 0

g or u: symmetric or anti-
symmetric with respect to
the inversion.

Irreducible representations:
Mirjana.Dimitrievska@empa.ch https://www.cryst.ehu.es/#pointop



https://www.cryst.ehu.es/#pointop

Application: Identification of fundamental modes

Symmetry of modes: polarization measurements

Zn,;P,: P4,/nme

v; =(cos@® 0 sin@)

cos @ —sin@
2= = (8
sin @ cos @

Mirjana.Dimitrievska@empa.ch

Intensity (arb. units)

<Y|ZZIY> 1 Ay

Ay

Exp
| oFT

<YIXX]Y> : Agg + Byg

<Y|ZX|Y> : E,

o s

Hitl 1 L e
LR F [ (e

Unpolarized: Ay + By + By + By
Byg

Exp
DFT

50 100 150 200 250 300 350 400
Raman shift (cm™)
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@ Empa
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Proto notation
< -Y|ZX|Y >

incoming radiation along -y-axis being

polarized along z-axis with the backscattered

(y) light polarized along x-axis
lmcmeu‘r
: LIGHT

,  polarization
angle

E.S. Stutz...M. Dimitrievska, Nanotechnology 32 085704 (2021)
M. Flor...M. Dimitrievska, Phys. Chem. Chem. Phys. 24 63 (2022)
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Application: Identification of fundamental modes @Empa
Identification of peak positions: deconvolution of Raman spectra

Intensity (arb. units)

<Y|ZZ|Y> : Ay Zn3P;

Unpolarized: Ay + By, + B,y + E;

M

|
||

50 100 150 200 250 300 350 400
Raman shift (cm™)

Mirjana.Dimitrievska@empa.ch

Materials Science and Technology

Procedure:

1)

2)
3)
4)

5)

6)

Determine which function is the most suitable for
the investigated system (Lorentzian, Gaussian,
Voight)

Baseline correction
Minimum number of meaningful peaks

Widths should have similar values for all peaks
(fundamental one-phonon modes)

Peak positions should not change for different
measurement configurations

Peak intensity should be a free parameter

You need to know your system well!

E.S. Stutz...M. Dimitrievska, Nanotechnology 32 085704 (2021)
M. Flor...M. Dimitrievska, Phys. Chem. Chem. Phys. 24 63 (2022)



Application: Identification of fundamental modes
Identification of peak positions: bad examples

Intensity (a.u.)

Intensity (arb. units)

T
300

@ Empa

Materials Science and Technology

Raman shift (cm") 160 200 240 260 160 240 320 40'0_1 480 N
Raman shift cm")
%08 3 1330 337345 351 T s
& af; 2 292&\/\\ //374 alcl
~ \ NS
= | e soosio sasiows M (\;(c)
(“: 2 » e
1] >
£ £
8 Z
- —
£ E

150 260 250 300 350 , 400 450 |

Mirjana.Dimitrievska@empa.ch Raman shift (cm™) %0

ENERGY SHIFT (o)
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Ideal Crystal

« Monocrystal

qg= 0 Momentum

I" point
Aq Ax>h s Polyerystalline
. i <
Defective Crystal
JRa—— :
L
Axd

T T T ! Defec‘"’e
_ feesiien polycrystalline

[, W) yiys upwe

»

>
q= 0  Momentum

I" point

M. Dimitrievska et al., Acta Materialia 70, 272—280 (2014)
Mirjana.Dimitrievska@empa.ch

Raman spectroscopy: defect identification

Raman features and defects

~
(=}

=

loss of

translational

@ Empa
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Effects of certain types of defects

Local vibrational
modes leading to

in
the Raman spectra

symmetry l ( )

|w)

(¢

@

o

g

= I

8 ‘ -~

= modes: phonon

= o o sary

S life time (defects).

=2

=

Phonon \

confinement Change in the

effects intensity of modes
due to breaking in

= certain molecular

< bonds (defects).

> 4

M. Dimitrievska et al. Appl. Phys. Lett. 106, 073903 (2015)

M. Dimitrievska et al. J. Mater. Chem. A,7, 13293-13304 (2019)
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Application: Defects — Phonon confinement model @ Empa

/

A Ideal Crystal
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qg=0  Momentum
I point

Ag-Ax>h

Ay a=18 By A3
Lo
20nm X30 X60 X30

x8 x16 x8
x4 X8 X4
4nm__ X2 x3 x2
x1
2nm X1 X1
— r : e . I
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Raman shift (cm-1)
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Materials Science and Technology

Defective Crystal

[ 2] yfiys uprmyy

.
/

q=0  Momentum
" point

N i2 2
I(co):j 9]1(Lq/2)/(Lq/2)2 4zt dg
0 p A A e
[a) (a)(q)+ w, + a)s)] + 2

Correlation length (L)
Crystal quality estimation model

M. Dimitrievska et al., Acta Materialia 70, 272—-280 (2014)
T. Lin Nanoscale, 10, 8704-8711 (2018)



Application: Defect cluster identification

Combinatorial studies and DFT calculations:
simple methodology for identifying defects in Cu,ZnSnSe,,.

A-type line
[Zne,t¥e]

[Zn)/[Sn]

PDOS (arb. units)

40

@ Empa
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201 N CuZZnsnse4
B-Type A3
[2Zn, +Zng ] ot
1.8F x *
16} 3%,
1.4+ )
A-Type e s
12+ Zn V] w8 S .'¢ )
1.0 1 1 1 1 1
0.5 0.6 0.7 0.8 0.9
[Cul/([Zn]*+[Sn])
[ Total Cu Zn Sn Se

A bl

50 100 150 200 250

Wavenumber (cm™)

Mirjana.Dimitrievska@empa.ch

Normalized I(196) [arb. units]

176

Normalized [(196) [arb. units]

B-type line
[ZZn( ||+Zn\u]

150

200 250

() SorSe

200

250

M. Dimitrievska et al. J. Mater. Chem. A, 7, 13293-13304 (2019)



Application: Compositional assessment
The shape of Raman spectra is very sensitive to changes in composition.

lmz 532 nm

Cu,ZnSnS,

Intenisty [arb. units]

0.780
0.758
/\’M -
W\‘ 0.520
0.425
0.302
0.210
0.102

[s]
/ [8e]+ [S]
k 1.000

0.928

0.850

0.000

Cu,ZnSnSe,

50 100 150 200 2

50

300

Raman shift [cm™]

Mirjana.Dimitrievska@empa.ch

350 400

41

@ Empa

Building methodologies for compositional
assessment:

1) Based on peak positions

2) Based on intensity ratio between
certain modes

350
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— 300

£ 290

S,

= 280,
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2 230
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£ 220
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R
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CZTSe-like peaks
. A symmetry modes
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S/(S+Se)

Materials Science and Technology

M. Dimitrievska et al. J. Alloys Compd., 628, 464—-470 (2015)



Application: Compositional assessment
The shape of Raman spectra is very sensitive to changes in composition.

lmz 532 nm

Cu,ZnSnS,

|

Intenisty [arb. units]

[s]
[Se]+[8]

1.000

0.928

0.850
0.780
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0.650

0.520

0.425
0.302
0.210
0.102
0.000

Cu,ZnSnSe,

50 100 150 200 250 300

Raman shift [cm™]
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350 400

[SV(ISI+[Sel)

Building methodologies for
compositional assessment:

1) Based on peak positions

2) Based on intensity ratio between
certain modes

@ Empa

Materials Science and Technology

T T T T T T T T
10 | Linear fit:
S/(S+Se) =k A
I k=1.26(3)
0.8 | C=-0.046(17)

270 - 380 cm‘/ (AISO»ZGO om® + Az7o-350 cm ’) +C

o
o
T
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o o o o
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M. Dimitrievska et al. J. Alloys Compd., 628, 464—-470 (2015)
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Conclusions @ Empa
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» Introduction: Raman spectroscopy
» Considerations to take into account when performing the measurements:
O Excitation energy
O Power density and signal/noise ratio
O System alignment and calibration
» What can you do with Raman spectroscopy?
O Fundamental identification of modes
O Crystal quality / defect assessment

0 Compositional assessment

Mirjana.Dimitrievska@empa.ch
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A% | Lattice Dynamics Calculations @ Empa
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E.S. Stutz...M. Dimitrievska, Nanotechnology 32 085704 (2021)
M. Flor...M. Dimitrievska, Phys. Chem. Chem. Phys. 24 63 (2022)
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| Lattice Dynamics Calculations

Phonon
DOS

300 0

200

Wavenumber (cm™)

T
.}{ 5@%\ W | :

(N ———

e
—_—
e
L=
—_—

0

Z A M ¥ Z R

E.S. Stutz...M. Dimitrievska, Nanotechnology 32 085704 (2021)
M. Flor...M. Dimitrievska, Phys. Chem. Chem. Phys. 24 63 (2022)

Mirjana.Dimitrievska@empa.ch

52
@ Empa
Vibrational patterns
S P NI
PORSER
ot gtoe og> |6 ¢
0;5 °® o= _e|®
Y r?;;’ “{@é#ﬁ“
9 |
Dgmad] BRI [oa
E,: 160 cm! A4 200 cm!

Simulated Raman spectra

e, Le,:06=15°
B,

g

80 120 160 200 240 280 320 360
Raman shift (cm™)



53

Materials design roadmap: Raman perspective @ Empa
Reference
Raman studies
Experiment:
Polarization
Raman

* measurements

high crystal quality,
stoichiometric samples

Mirjana.Dimitrievska@empa.ch



m Experiment: synthesis of new materials @ Empa

Desired Usually obtained

Monocrystalline growth

Advantage:
Single crystal growth

Solution:

Nanowires o

Disadvantage:
Characterization

Mirjana.Dimitrievska@empa.ch M. Dimitrievska et al. Adv. Funct. Mater. 31, 2105426 (2021)
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m Experiment: Reference Raman spectra @ Empa
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Zn,P, vertical nanowires :{> Polarization Raman spectroscopy

Raman R _
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intensity

E.S. Stutz...M. Dimitrievska, Nanotechnology 32 085704 (2021)
Mirjana.Dimitrievska@empa.ch M. Flor...M. Dimitrievska, Phys. Chem. Chem. Phys. 24 63 (2022)
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E.S. Stutz...M. Dimitrievska, Nanotechnology 32 085704 (2021)
—| M. Flor...M. Dimitrievska, Phys. Chem. Chem. Phys. 24 63 (2022)
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|ldentification of peak positions: deconvolution of Raman spectra °Empa
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Minimum Peak positions: constant for
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all peaks (one phonon modes)
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E.S. Stutz...M. Dimitrievska, Nanotechnology 32 085704 (2021)
M. Flor...M. Dimitrievska, Phys. Chem. Chem. Phys. 24 63 (2022)
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Raman spectroscopy: defect identification

Raman features and defects
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M. Dimitrievska et al. Appl. Phys. Lett. 106, 073903 (2015)

M. Dimitrievska et al. J. Mater. Chem. A,7, 13293-13304 (2019)
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£ Raman spectroscopy: defect identification @ Empa
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Intensity (arb. units)

£ Raman spectroscopy: defect identification @ Empa
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E.S. Stutz...M. Dimitrievska, Faraday Discussions (2022)
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Hi¥ Raman spectroscopy: defect identification @ Empa
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Hi¥ Raman spectroscopy: defect identification @ Empa

Materials Science and Technology
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Hi¥ Raman spectroscopy: defect identification @ Empa
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Hi¥ Raman spectroscopy: defect identification @ Empa

Materials Science and Technology
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M. Dimitrievska et al. J. Mater. Chem. A,7, 13293-13304 (2019)

M. Dimitrievska et al. Solar Energy Materials & Solar Cells 157, 462 (2016)
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Hi¥ Raman spectroscopy: defect identification @ Empa
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Accelerated materials development @ Empa

Raman spectroscopy
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Smart workflows for materials
exploration: combinatorial
sample synthesis
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characterization l,,\
platforms for A
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combinatorial
structure-
property-function
characterization

| 4-1'

Materials Science and Technology

Advanced statistical and machine
learning data analysis

In-operando
measurements
and device
properties

~ Device
assembly

M.Dimitrievska,
High-throughput experimentation for accelerated materials development (2023)
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Multiwavelength excitation Raman spectroscopy: °Empa
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M. Dimitrievska et al. Sol. Energy Mater. Sol. Cells,149, 304-309 (2016)
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I]!! Multi length excitation Raman spectroscopy: OEmpa
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Mirjana.Dimitrievska@empa.ch M. Dimitrievska et al. Sol. Energy Mater. Sol. Cells,149, 304—309 (2016)



75
Multiwavelength excitation Raman spectroscopy: °Empa

Materials Science and Technology

. .. Kesterite:
Effect of impurities on the performance of solar cells Cu,ZnSnSe,
Efficiency [%)
14 _5_9 > -
200 devices » L1 Cul(Zn+sn)

1.0

(3 x 3 mm?)

10

50
. 40
30
20
045 10
6 0.0

=)

e \\ S §
030 - . -
¢
il oCu ©Zn oSn OSorSe

Row #

4 6 8 10 12 14 ;
Column # 2 4 (?0|Ul'$'ln #10 12 1 0.30 0.35 mo!o‘.;t)znseo,u 0.50
. Eff. (%) J_ (mA/m’) V_.(mV) FF (%)
Impurity L 222 .
phase -I T T T il T T T T -—I T T T T -‘-l T T T T T T ]
diagram (s) ZnSe _-—.;o-c— :.o ® o amn “o uo-_
\JUHQ ® 00 O -+ W - 10 o0 & d [eliosaeiav]

- - - - .

T
}
!
=t
1
T
1

sand b) Sn-Se | ame
030 L il i 1 i
(b) Cu-Se and (s) ZnSe} e ° ™ e
- (b) Cu-Se} e 1e o 1o

‘ S VARG VA CE Vs NV AL
0.30 0.35 0.40 0.45 0.50 r il
1 1 1 1 1 1 1 L 1 1 1 1 L | P P
mol. % ZnSe

Mirjana.Dimitrievska@empa.ch M. Dimitrievska et al. Sol. Energy Mater. Sol. Cells,149, 304—309 (2016)




Materials design roadmap: Raman perspective

Reference
Raman studies

<

- Experiment:
Multiwavelength

I excitation Raman

measurements

high crystal quality,
stoichiometric samples

Mirjana.Dimitrievska@empa.ch

76

@ Empa

Materials Science and Technology

g

~ Structure-function
correlation:
Device performance



Materials design roadmap: Raman perspective

<

Reference
Raman studies

Intensity

&7
N V"b E

Theory:
Lattice
dynamics
calculations I

Mirjana.Dimitrievska@empa.ch

77

@ Empa

Materials Science and Technology

g

29 Raman

_ (o83 Defect
Experiment: identification
Polarization 2t
measurements

Secondary phase

identification:

phase diagram
Experiment:

 Multiwavelength

excitation Raman

measurements ~ Structure-function

correlation:
Device performance

high crystal quality,
stoichiometric samples



Th an k yo u fo r yO ur atten tl on ' Materials Science and Technology

Spectroscopy

Spectroscopy Dr. Elena Dr. Erwin Dr. Peter
and Imaging Mavrona Hack Zolliker

Imaging

Angel Alex

o Labordet Alvarez ~ Weitnauer
Mirjana.Dimitrievska@empa.ch



79

Outline @ Empa

Materials Science and Technology

Mirjana.Dimitrievska@empa.ch



80

Outline @ Empa

Materials Science and Technology

Mirjana.Dimitrievska@empa.ch



81

Outline @ Empa

Materials Science and Technology

Mirjana.Dimitrievska@empa.ch



82

Outline @ Empa

Materials Science and Technology

Mirjana.Dimitrievska@empa.ch



